skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Najafkhani_Feijani, Fateme"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fabricating mechanically robust graphene aerogels (GAs) without compromising their notable features including superelasticity, large surface area, high porosity, and low density is challenging. This work presents a new one-pot strategy based on ambient drying to fabricate a three-dimensional (3D) graphene-polyethylene aerogel (G-PEA) with a unique hierarchical porous structure, in which the highly porous polyethylene is encapsulated by graphene frameworks. The hierarchical G-PEA exhibited substantially enhanced compressive strength while maintaining low density and superelasticity comparable to those of bare GAs. The G-PEAs with 5 wt.% PE (G-PEA5) showed a significant improvement (up to 2083%) in compressive stress compared to bare GAs, which can be attributed to the porous PE support within the GA framework. The G-PEA5 retained 94% of its compressive stress after 100 compression cycles, which is still higher than that (~80%) of bare GAs, and maintained good elastic recovery. The designed hierarchical G-PEAs show great promise in the applications that require outstanding mechanical properties. 
    more » « less